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� Jan-Hendrik Evertse, Leiden University (The Netherlands)

� Daniel Goldston, San José State University (USA)
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� Gábor Nyul
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Ágoston Papp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Attila Pethő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
István Pink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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nikola.adzaga@grad.unizg.hr, (University of Zagreb (Croatia))
Joint work with: Vishal Arul, Lea Beneish, Mingjie Chen, Shiva Chidambaram, Timo
Keller, Oana Padurariu and Boya Wen

Rational points on quotients of modular curves by Atkin-Lehner involutions

In this talk we present how to provably determine all rational points on curves X+
0 (p)

of genus g up to 6 (for prime p). Denote by r the rank of the Jacobian of the curve
over the rationals. As these curves usually satisfy r = g, we use Quadratic Chabauty.
We also determine all rational points on hyperelliptic curves X∗0 (N) where we used
other methods as well: quotients, Mordell-Weil Sieve and variations of Chabauty’s
method. Since the points on these curves parametrize elliptic curves with additional
structure, we also classify rational points on all X+

0 (p) and on hyperelliptic X∗0 (N) for
N squarefree.

Nikola Adžaga

akiyama@math.tsukuba.ac.jp, (University of Tsukuba (Japan))
Joint work with: Teturo Kamae and Hajime Kaneko

Multiplicative Lagrange spectrum and symbolic dynamics

For a fixed irrational α ∈ R, approximation of 0 by the sequence nα mod 1 for n =
1, 2, . . . is a classical subject in number theory. Topological structure of the set{

lim sup
n

1

n‖nα‖

∣∣∣∣ α ∈ R \Q
}

is very curious and known as Markoff-Lagrange spectra. We study a multiplicative
analogy of this spectra. Let us fix a linear recurrence of exponential growth. We
consider the set {

lim sup
n
‖<(xn)‖

}
where xn runs over all complex sequences satisfying this recurrence. Under some con-
dition, we derive results analogous to Markoff-Lagrange spectra. As a special case, our

Shigeki Akiyama
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results give information on the topology of the set{
lim sup

n
‖<(ξαn)‖

∣∣∣∣ ξ ∈ C
}

when α is a complex Pisot number. The basic idea is to construct an intertwing formula
to lift the problem to a symbolic dynamical setting.

vishnupriya.anupindi@ricam.oeaw.ac.at, (Johann Radon Institute for Computational
and Applied Mathematics (Austria))
Joint work with: László Mérai

Pseudorandom sequences from hyperelliptic curves of genus 2

Pseudorandom sequences, i.e. sequences which are generated with deterministic al-
gorithms but look random, have many applications, for example in cryptography, in
wireless communication or in numerical methods. In this work, we are interested in
studying the properties of pseudorandomness of sequences derived from hyperelliptic
curves of genus 2.

In particular, we will look at two different ways of generating sequences, that is,
the linear congruential generator and the Frobenius endomorphism generator. We
show that these sequences possess good pseudorandom properties in terms of linear
complexity. In this talk, we will introduce the N-th linear complexity of a sequence,
the group structure on hyperelliptic curves of genus 2 and look at the main results.

References

[1] Anupindi, V. and Mérai, L. Linear complexity of some sequences derived from
hyperelliptic curves of genus 2, Cryptogr. Commun. 14 (2022), 117–134.

[2] Anupindi, V. Linear complexity of sequences on Koblitz curves of genus 2, Uni-
form Distribution Theory, Bd. to appear.

Vishnupriya Anupindi
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arnoczki.timea@science.unideb.hu, (University of Debrecen (Hungary))
Joint work with: Gábor Nyul

Jacobi–Whitney numbers

W. N. Everitt, L. L. Littlejohn and R. Wellman introduced a new class of Stirling-like
numbers, the Legendre–Stirling numbers of the first and second kind. A few years later,
these numbers were generalized to the Jacobi–Stirling numbers by the same authors
together with K. H. Kwon and G. J. Yoon. All these definitions are based on a deep
analytical problem.

In the talk, we give combinatorial interpretations of Jacobi–Stirling numbers of the
first and second kind in a unified spirit, that also fit with the combinatorial definition of
ordinary Stirling numbers. Moreover, we define a new type of combinatorial numbers,
the Jacobi–Whitney numbers of the first and second kind in a combinatorial way, which
give back Jacobi–Stirling numbers as a special case. We present several properties
of Jacobi–Whitney numbers, for example recurrence relations, polynomial identity,
orthogonality, unimodality.

Finally, we mention the difficulties of defining Jacobi–Whitney–Lah numbers.

T́ımea Arnóczki

battagergo424@gmail.com, (University of Debrecen (Hungary))

On 3rd Power Rational Diophantine Triples and Quadruples

Let k ≥ 2 be a fixed integer. A set of non-zero rationals {a1, a2, ..., an} is said to be a
kth power rational Diophantine n-tuple if for every 1 ≤ i < j ≤ n there exist rationals
rij such that aiaj +1 = rkij. It is fairly simple to find examples for small values of k and
n, the sets {1, 3, 8, 120}, {2, 171, 25326}, {1352, 8539880, 9768730} all being examples.
The natural problem arising from the definition is the following: how large, say for a
given k, the tuple can be?

The case of k = 2 is classical, its history dating back to Diophantus himself and
follows the work of Fermat and Euler, eventually becoming a more and more actively
researched area in relation with Diophantine equations and Diophantine geometry.
As of today, the ”best” published results establish that there exists infinitely many
sextuples and, provided that we are restricted to rational integers, that no quintuple
exists. Surprisingly, or not, the higher values of k did not receive much attention except
for the case of rational integers: here, Bugeaud and Dujella set explicit bounds on n.

In present talk, we prove the existence of infinite families of 3rd power rational

Gergő Batta
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Diophantine triples and quadruples. We first introduce the concept of elliptic curves
induced by 3rd power rational Diophantine pairs, then use 3-descent to find points on
this curve that extend the pair to a triple. For special families of pairs, we go one step
further and find pairs of points that both serve as extension to a triple and together
to a quadruple. The approach is an analogue of the k = 2 case, where elliptic curves
induced by triples and 2-descent are leveraged.

The talk serves as a follow up to another contributed talk entitled ”On Higher
Power Rational Diophantine Tuples”.

francesco.battistoni@unimi.it, (University of Milan (Italy))
Joint work with: Giuseppe Molteni

Optimization of polynomials for the study of small regulators

Number fields with small regulators can be detected thanks to a method developed by
Astudillo, Diaz y Diaz and Friedman. The efficiency of the procedure can be strength-
ened by improving the upper bound of a logarithmic term in a specific inequality, and
this corresponds to finding the true maximum of a certain polynomial over an hyper-
cube.
We show how we found and proved the true maximum in the case of totally real fields
(thus solving a conjecture by Pohst [2]) and how we consistently lowered the upper
bound in the case of fields with one complex embedding: as a consequence, we are
able to detect the field of degree 8 and signature (6,1) with minimum regulator (as
conjectured in [1]).

References

[1] F. Battistoni. A conjectural improvement for inequalities related to regulators of
number fields. Bollettino dell’Unione Matematica Italiana, 14: 609–627, 2021.

[2] F. Battistoni and G. Molteni. Generalization of a Pohst’s inequality. J. Number
Theory, 228: 73–86, 2021.

Francesco Battistoni
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berczesa@science.unideb.hu, (University of Debrecen (Hungary))

Effective results for Diophantine equations over finitely generated domains

Let A := Z[z1, . . . , zr] ⊃ Z be a finitely generated integral domain over Z and denote by
K the quotient field of A. Finiteness results for several kinds of Diophantine equations
over A date back to the middle of the last century. S. Lang generalized several earlier
results on Diophantine equations over the integers to results over A, including results
concerning unit equations, Thue-equations and integral points on curves. However, all
his results were ineffective. The first effective results for Diophantine equations over
finitely generated domains were published in the 1980’s, when Győry developed his new
effective specialization method. This enabled him to prove effective results over finitely
generated domains of a special type. In 2011 Evertse and Győry refined the method of
Győry such that they were able to prove effective results for unit equations ax+ by = 1
in x, y ∈ A∗ over arbitrary finitely generated domains A of characteristic 0. Using this
new general method Bérczes, Evertse and Győry obtained effective results for Thue
equations, hyper- and superelliptic equations and for the Schinzel-Tijdeman equation
over arbitrary finitely generated domains. Later Bérczes proved effective results for
equations F (x, y) = 0 in x, y ∈ A∗ for arbitrary finitely generated domains A, and
for F (x, y) = 0 in x, y ∈ Γ, where F (X, Y ) is a bivariate polynomial over A and Γ is
the division group of a finitely generated subgroup Γ of K∗. Koymans generalized the
effective result of Tijdeman on the Catalan equation for finitely geberated domains,
while Evertse and Győry proved effective results for decomposable form equations in
this generality.

In my talk I will present a short survey of the method of Evertse and Győry and of
the above mentioned results obtained by this method.

Attila Bérczes

bennett@math.ubc.ca, (University of British Columbia (Canada))
Joint work with: Samir Siksek and Philippe Michaud-Jacobs

Differences between squares and perfect powers

I survey recent work on the classical Lebesgue-Nagell equation x2 + D = yn, when
the prime divisors of D are restricted to a fixed finite set S. This is joint work with
Samir Siksek and, in part, with Philippe Michaud-Jacobs. Our results rely upon a
combination of various results based upon the modularity of Galois representations,
with bounds for linear forms in logarithms.

Michael A. Bennett
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biro.andras@renyi.hu, (Alfréd Rényi Institute of Mathematics (Hungary))

Class number one problem for a family of real quadratic fields

We effectively solve the class number one problem for a certain family Q
(√

D
)

(D ∈
F) of real quadratic fields, where F is an infinite subset of the set of odd positive
fundamental discriminants. The set F contains the Yokoi discriminants n2 + 4, so our
result is a generalization of the solution of Yokoi’s Conjecture. But this family may
contain fields with comparatively larger fundamental units than the fields in the Yokoi
family (it may be as large as log2D instead of logD). The proof is also a generalization
of the proof of Yokoi’s Conjecture.

András Biró

fabrouck.broucke@ugent.be, (Ghent University (Belgium))
Joint work with: Gregory Debruyne and Jasson Vindas

Malliavin’s problems for Beurling generalized primes

A system of Beurling generalized primes P is a non-decreasing sequence of reals
p1 ≤ p2 ≤ · · · with the requirement that p1 > 1 and that pj → ∞. The associated
system of generalized integers N = (n0 = 1, n1, n2, · · · ) is the multiplicative semigroup
generated by 1 and P . With these systems one associates counting functions

πP(x) =
∑
pj≤x

1, NP(x) =
∑
nk≤x

1.

One of the central goals of the theory is to investigate the relationship between these
counting functions, especially when one is close to its classical counterpart. More
specifically, we consider asymptotics of the form

π(x) =

∫ x

2

dt

log t
+O(R1(x)), or N(x) = ρx+O(R2(x)),

where ρ is a positive constant and R1 and R2 are certain remainders. P. Malliavin [4]
considered remainders of the form

R1(x) = x exp(−c1 logα x), R2(x) = x exp(−c2 logβ x),

Frederik Broucke
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for some c1, c2 > 0 and with α, β ∈ (0, 1]. It turns out that a remainder of the form R1

for π implies a remainder of the form R2 for N , and vice-versa. Malliavin’s problems
concern finding the optimal form of the remainders in these relations.

In this talk, I will present some recent progress in this problem. In particular, we
recently definitively settled the direction π → N . This talk is based on collaborative
work with G. Debruyne and J. Vindas, which appeared in the articles [1, 2, 3].
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B′

Let n ≥ 1 be an integer and α1, . . . , αn be non-zero algebraic numbers. Let b1, . . . , bn
be integers with bn 6= 0, and set B = max{3, |b1|, . . . , |bn|}. For j = 1, . . . , n, let Aj
be such that logAj ≥ max{h(αj), 2}, where h denotes the (logarithmic) Weil height.
Assume that the quantity Λ = b1 logα1 + · · · + bn logαn is nonzero. A typical lower
bound of log |Λ| given by Baker’s theory of linear forms in logarithms takes the shape

−c(n,D) logA1 . . . logAn logB,

where c(n,D) is positive, effectively computable and depends only on n and on the
degree D of the field generated by α1, . . . , αn. However, in certain special cases and in

Yann Bugeaud
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particular when |bn| = 1, this bound can be improved to

−c(n,D) logA1 . . . logAn log
B

logAn
.

The term B′ := B/ logAn in place of B originates in works of Feldman and is a key
tool for improving, in an effective way, the upper bound for the irrationality exponent
of a real algebraic number of degree at least 3 given by Liouville’s theorem. We sur-
vey various applications of Feldman’s B′ to exponents of approximation evaluated at
algebraic numbers, to the S-part of integer sequences, and to Diophantine equations.

Cecile.Dartyge@univ-lorraine.fr, (Université de Lorraine (France))
Joint work with: James Maynard

On the largest prime factor of quartic polynomial values : the dihedral and
cyclic cases

Let P be a monic, quartic and irreducible polynomial with integer coefficients and with
a cyclic or dihedral Galois group.

We prove that there exists cP > 0 such that P (n) has a prime factor > n1+cP for a
positive proportion of integers n.

Cecile Dartyge

gregory.debruyne@ugent.be, (Ghent University (Belgium))
Joint work with: Jasson Vindas

Optimality in Tauberian theorems

One version of the Ingham-Karamata theorem states that for each slowly oscillating
function τ whose Laplace transform admits an analytic continuation beyond the line
<s s = 0 must obey the asymptotic law τ(x) = o(1). This theorem is a cornerstone in
Tauberian theory and has plenty of applications in number theory; one of the quickest
proofs of the Prime Number Theory passes through this theorem.

In this talk, we shall investigate if one can obtain stronger asymptotics on τ if one
assumes the analytic extension of the Laplace transform goes up to a certain half-plane
<s s = −C. The answer is negative if one assumes merely analytic continuation on
these half-planes; we shall provide a non-constructive proof of this fact that is based
on the open mapping theorem.

Gregory Debruyne
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On elliptic curves induced by rational Diophantine quadruples

We consider elliptic curves induced by rational Diophantine quadruples, i.e. sets of
four nonzero rationals such that the product of any two of them plus 1 is a perfect
square. We show that for each of the groups Z/2Z× Z/kZ for k = 2, 4, 6, 8, there are
infinitely many rational Diophantine quadruples {a, b, c, d} with the property that the
elliptic curve birationally equivalent to the curve y2 = (ax+ 1)(bx+ 1)(cx+ 1)(dx+ 1)
has this torsion group. We also construct elliptic curves with moderately large ranks
in each of these four cases.

Andrej Dujella

elsholtz@math.tugraz.at, (Graz University of Technology (Austria))
Joint work with: Rainer Dietmann, Alexander Kalmynin, Sergei Konyagin and James
Maynard

Longer gaps between values of binary quadratic forms

We prove new lower bounds on large gaps between integers which are sums of two
squares, or are represented by any binary quadratic form of discriminant D, improving
results of Richards. Let s1, s2, . . . be the sequence of positive integers, arranged in
increasing order, that are representable by any binary quadratic form of fixed discrim-
inant D, then

lim sup
n→∞

sn+1 − sn
log sn

� |D|
ϕ(|D|) log |D|

,

improving a lower bound of 1
|D| of Richards. In the special case of sums of two squares,

we improve Richards’s bound of 1/4 to 390
449

= 0.868 . . ..
We also generalize Richards’s result in another direction: If d is composite we show

that there exist constants Cd such that for all integer values of x none of the values
pd(x) = Cd +xd is a sum of two squares. Let d be a prime. For all k ∈ N there exists a
smallest positive integer yk such that none of the integers yk + jd, 1 ≤ j ≤ k, is a sum
of two squares. Moreover,

lim sup
k→∞

k

log yk
� 1√

log d
.

The pdf of the paper is on the speaker’s webpage.

Christian Elsholtz
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Swaminathan

Equivalence relations of polynomials

We recall a long-forgotten notion of equivalence for polynomials in Z[X] introduced
by Hermite in the 1850s. We compare this with better known equivalence relations
for such polynomials, i.e., GL2(Z)-equivalence and order equivalence (in the talk we
define the order associated to a polynomial in Z[X]; then two polynomials in Z[X] are
order equivalent if they have the same associated order). As it will turn out, GL2(Z)-
equivalence implies Hermite equivalence, which in turn implies order equivalence. From
work of Delone and Faddeev (1940) it follows that for cubic polynomials in Z[X] these
equivalence relations coincide, but for higher degree polynomials this is no longer the
case. We will discuss this in more detail.

Jan-Hendrik Evertse

victor.fadinger@uni-graz.at, (University of Graz (Austria))
Joint work with: Sophie Frisch and Daniel Windisch

Integer-valued polynomials on discrete valuation rings of global fields with
prescribed lengths of factorizations

Let V be a discrete valuation domain with residue field of characteristic p ≥ 3 whose
quotient field K is a global field. We show that for all integers 1 ≤ k and 2 ≤
n1 ≤ . . . ≤ nk there exists an integer-valued polynomial on V , that is, an element
of Int(V ) = {f ∈ K[X] | f(V ) ⊆ V }, which has precisely k essentially different
factorizations into irreducible elements of Int(V ) whose lenghts are exactly n1, . . . , nk.
This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in this case.

Victor Fadinger

ssferenczi@gmail.com, (Aix-Marseille University (France))
Joint work with: Pascal Hubert

A dynamical application of Ostrowki’s algorithm

We look at d-point extensions of a rotation of angle α with r marked points, generalizing
the famous examples of Veech 1969 and Sataev 1975. The Ostrowski expansions of the

Sébastien Ferenczi
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marked points by α allows us to study the dynamical property of rigidity for these
examples, and its relation to the word-combinatorial property of linear recurrence for
the natural coding of the rotation with marked points. This allows us to build the first
examples of non linearly recurrent and non rigid interval exchange transformations.

filipf@ujs.sk, (J. Selye University (Slovakia))
Joint work with: János T. Tóth

On the powers of asymptotic density

A natural method for measuring sets of natural numbers is the asymptotic density,
which is a special case of weighted densities. These densities are based on the Riesz
summation method. More generally, any regular non-negative Toeplitz matrix deter-
mines a density. Let C denote the matrix that generates the asymptotic density.

In our talk, we study the relation of the densities defined by the matrices Ck, (k =
2, 3, . . . ) to the asymptotic and logarithmic densities.

Ferdinánd Filip

alan.filipin@grad.unizg.hr, (University of Zagreb (Croatia))
Joint work with: Ana Jurasić

Polynomial D(−3)-quadruples

In this talk we prove that there does not exist a set of four non-zero polynomials
from Z[X], not all constant, such that the product of any two of its distinct elements
decreased by 3 is a square of a polynomial from Z[X]. For integer n 6= 0, a set
of m positive integers is called D(n)-m-tuple if products of any two of its distinct
elements increased by n is a perfect square. There are many results concerning the
upper bounds for such sets. It is easy to prove that if n ≡ 2 (mod 4), then there does
not exist a D(n)-quadruple. On the other hand, Dujella proved that if n 6≡ 2 (mod 4)
and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exist at least one D(n)-quadruple.
Moreover, he conjectured that there does not exist a D(n)-quadruple, if n ∈ S. That
conjecture is still open, but was recently confirmed for n = −1 and n = −4. Here
we consider the polynomial version of this problem, and proving that there does not
exist a polynomial D(−3)-quadruple in Z[X], together with previous results of more
authors, we finish the proof that there does not exist such polynomial D(n)-quadruple
for n ∈ S.

Alan Filipin
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Annihilators of the ideal class group of an imaginary abelian field

The aim of this talk is to study annihilators of the minus part of the ideal class group
of an imaginary abelian field M . The usual source of these annihilators is the Stickel-
berger ideal (defined by Sinnott) whose elements come from the factorization of Gauss
sums. Under certain assumptions on M , we managed to enlarge this ideal by adding
annihilators obtained by factoring a suitable generalized root of modified Gauss sums.
It can be shown that this enlarged Stickelberger ideal is strictly larger than the Stick-
elberger ideal if there is an odd prime ` | [M : Q], unramified in M/Q, and two primes
q and q′ ramifying in M/Q, having their decomposition groups Dq ⊆ Dq′ cyclic of
`-power order.

Pavel Franćırek

gaal.istvan@unideb.hu, (University of Debrecen (Hungary))

Monogenity and power integral bases

Monogenity and power integral bases is a classical topic of algebraic number theory,
which is intensively studied even nowadays, cf. [1]. In our survey we describe the most
important classical and recent results and the most important methods that can be
applied to prove monogenity or non-monogenity of number fields and certain classes of
number fields.
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Sets whose differences avoid squares modulo m

Let A ⊂ Zm be such that A−A does not contain nonzero quadratic residues modulo m.

Mikhail R. Gabdullin
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It is highly believed that for square-free m the bound |A| �ε m
ε holds for any ε > 0,

but this hypothesis seems to be far beyond the reach of current methods. M. Matolcsi
and I. Ruzsa proved that |A| ≤ m1/2 if m is square-free and has prime divisors of the
form 4k+ 1 only, and I showed that |A| � m1/2+o(1) for almost all positive integers m.

In our joint work with K. Ford we overcome this square-root barrier and prove that
if ε(m)→ 0 arbitrarily slowly, then for almost all m we have |A| ≤ m1/2−ε(m).

Krystian.Gajdzica@im.uj.edu.pl, (Jagiellonian University (Poland))

The log-concavity of the restricted partition function pA(n, k) and beyond

Let k be a positive integer, and let A be a weakly increasing sequence of positive
integers. The restricted partition function pA(n, k) enumerates all partitions of n whose
parts belong to the multiset {a1, a2, . . . , ak}. We discuss under what conditions on k
and A, the function pA(n, k) is log-concave — it satisfies

p2
A(n, k) > pA(n+ 1, k)pA(n− 1, k)

for all sufficiently large values of n. Moreover, we also investigate other inequalities of
this type for the function pA(n, k). Among other things, we show some results related
to: the strong log-concavity, the log-balancedness, the higher order Turán inequalities
and the r-log-concavity.

Krystian Gajdzica

filipux.gawron@student.uj.edu.pl, (Jagiellonian University (Poland))
Joint work with: Tomasz Kobos

On the length of the period of the continued fraction of n
√
d

It is known that if α is a quadratic irrational number then the continued fraction
expansion of α is eventually periodic. Let us denote by D(α) the length of the periodic
part of the continued fraction expansion. In the paper from 1972, Chowla and Chowla
[1] asked the following question:
Question 1. For a given integer k ≥ 1, are there infinitely many integers d ≥ 1 such
that D(

√
d) = k?

The answers turns out to be positive, which was shown by Friesen in [2]. Changing the
point of view, we can fix a positive integer d, which is not a perfect square, and study
the set of values of the sequence (D(n

√
d))∞n=1. This raises a natural question:

Filip Gawron
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Question 2. For a given integers k ≥ 1 and d ≥ 1, are there infinitely many integers
n ≥ 1 such that D(n

√
d) = k?

Contrary to the previous question, the answer turns out easily to be negative. For
example, if D(

√
d) is even, then D(n

√
d) is also even for every n ≥ 1. Therefore, in

order to make this question more specific and interesting, we define

Ad = {k ∈ N : there exist infinitely many n for which D(n
√
d) = k}.

In other words, Ad is the set of limit points of the sequence (D(n
√
d))∞n=1. In my talk,

I will describe the connections between continued fractions, Pell’s equation, and the
Euclidean algorithm. Then I will use these connections to show the idea of proof that
for fixed positive integer d, which is not a perfect square, the set Ad contains infinitely
many even numbers. Finally, I will mention some conjectures related to the set Ad.
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Joint work with: Ade Irma Suriajaya

Pair Correlation of Zeta-Zeros and Two Problems on Primes

We assume the Riemann Hypothesis. Denoting a complex zero of the Riemann zeta-
function by ρ = 1/2 + iγ, Montgomery introduced the function

F (x, T ) :=
∑

0<γ,γ′≤T

xi(γ−γ
′) 4

4 + (γ − γ′)2
,

which is useful in studying the pair correlation of zeros. He conjectured that F satisfies
an asymptotic formula in the range T ≤ x ≤ TM for any fixed constant M . This
conjecture improves on a number of classical results on primes obtained assuming the
Riemann Hypothesis. We show by extending the range of Montgomery’s conjecture

Daniel Goldston
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that we can improve the error term in a formula of Fujii for the average number of
Goldbach representations and also the error in the prime number theorem.
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Revisiting the linear complexity of a random bit lattice

The study of measures of pseudorandomness has received much attention in the over
the last two decades. The work of Sárközy, Maudit, Golomb and many others have
been fundamental to understand the behavior of random sequences and construct pseu-
dorandom sequences for communications and cryptography. Multidimensional lattice
(or multidimensional arrays) are mathematical objects studied for encryption and wa-
termarking bitmap. Hubert, Mauduit and Sárközy [3] generalized several measures of
pseudorandomness from binary sequences to their multidimensional equivalent. One
missing measure was linear complexity, which is an important and frequently used
measure of unpredictability for sequences. This measure was introduced in [1] for two
dimensional lattices and further developed in [2], where the authors conjectured that
the normalized linear complexity is close to 1/2.

In this talk, we plan to show several new results towards the solution of the con-
jecture, a new relationship between pseudorandom measure of order ` and the linear
complexity. Finally, we will discuss high order correlation attacks on several families
of multidimensional arrays.
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On a Diophantine equation involving k-Fibonacci numbers

In this lecture, we deal with the so-called k-Fibonacci sequence. Let G0 = 0, G1 = 1,
and Gn = kGn−1+Gn−2 for any n ≥ 2, where k is a fixed positive integer. We determine
the solutions to the diophantine equation

Gp
1 + 2Gp

2 + · · ·+ `Gp
` = Gq

n

in positive integers `, n if k, p and q are small. More precisely we suppose that p, q, k ≤
10. These bounds are subjective, the method, al least in theory would work with
arbitrary p, q, and k.

Krisztián Gueth

tguzvic@math.hr, (University of Zagreb (Croatia))

Torsion groups of elliptic curves with rational j-invariant

Let [K : Q] = p be a prime number and let E/K be an elliptic curve with j(E) ∈ Q.
We determine the all possibilities for E(K)tors. We obtain these results by studying
Galois representations of E and of its quadratic twists.

Tomislav Gužvić

katalin.gyarmati@ttk.elte.hu, (Eötvös Loránd University (Hungary))

Pseudorandomness of Legendre sequences based on random polynomials

It is crucial in pseudorandomness cryptographic applications that the smaller key used
as a seed can be generated at random. Thus, if you use the Legendre sequence based

Katalin Gyarmati
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on a polynomial (proposed by Hoffstein and Lieman) that is{(
f(1)

p

)
,

(
f(2)

p

)
,

(
f(3)

p

)
, . . . ,

(
f(p)

p

)}
,

it is important to choose the polynomial coefficients at random. Goubin, Mauduit,
and Sárközy presented some non-restrictive conditions on the polynomial f , but these
conditions may not be satisfied if we choose a truly random polynomial. However,
how can it be ensured that the sequence’s pseudorandom measures are always low for
polynomials that are almost ”random”? These seemingly random polynomials will be
constructed with as few modifications as necessary from a true random polynomial.
The difficulties raised above will be discussed in my talk.

gyimesie@science.unideb.hu, (University of Debrecen (Hungary))
Joint work with: Gábor Nyul

Associated r-Dowling numbers and some relatives

In our talk, we introduce and study a new generalization of Bell numbers by combining
r-Bell numbers, associated Bell numbers and Dowling numbers. For defining these s-
associated r-Dowling numbers, we partition elements into blocks so that r distinguished
elements have to be in distinct blocks, the cardinality of certain blocks is bounded
from below by s, and some elements are coloured according to a colouring rule. Along
with them, we define some relatives, the s-associated r-Dowling factorials and the s-
associated r-Dowling–Lah numbers, when the underlying set is decomposed into cycles
or ordered blocks.

The results on these numbers are highly based on the exponential generating func-
tion of their sequences derived from the so-called r-compositional formula also presented
in this talk. The talk is based on a joint paper [1] with Gábor Nyul.
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Indecomposability of sequences defined by narrow sets of primes

A setA of positive integers is called additively or multiplicatively irreducible if it cannot
be written asA = B+C orA = B·C, respectively, with B, C ⊂ N, |B|, |C| ≥ 2. In the talk
we summarize recent results about the additive and multiplicative irreducibility, in the
asymptotic sense, of sets A composed of a narrow set of primes. While these questions
are strongly related to classical problems in additive and multiplicative number theory,
in the proofs we need to combine deep tools from the theory of exponential Diophantine
equations with various methods from prime number theory and combinatorics.

Lajos Hajdu

gharcos@renyi.hu, (Alfréd Rényi Institute of Mathematics (Hungary))
Joint work with: Péter L. Erdős, Shubha R. Kharel, Péter Maga, Tamás R. Mezei and
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The sequence of prime gaps is graphic II.

This is the second part of two talks (the first part will be delivered by Péter Maga).
Let us call a simple graph on n > 1 vertices a prime gap graph if its vertex degrees
are 1 and the first n− 1 prime gaps (we need the 1 so that the sum of these numbers
is even). We can show that such a graph exists for every large n, and under RH for
every n > 1. Moreover, a sequence of such graphs can be generated by a so-called
degree preserving growth process: in any prime gap graph on n vertices, we can find
(pn+1−pn)/2 independent edges, delete them, and connect the ends to a new, (n+1)-th
vertex. This creates a prime gap graph on n+ 1 vertices, and the process never ends.

Gergely Harcos
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Problems in Combinatorial Number Theory related to Computer Science

In the last decades there are several interplay between theoretical computer sciences
and additive combinatorics. In this short talk we present some new applications of
additive combinatorics in theory of Boolean functions. Some related problems are also
discussed.

Norbert Hegyvári
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Extrema of polynomials with real roots and Diophantine equations

There are many results in the literature concerning polynomial values and (shifted)
power values of polynomials with consecutive integer roots, or more generally, with
roots forming an arithmetic progression. It is an interesting question that how far one
can ’disturb’ the structure of the roots such that the finiteness results still remain valid.
Also there are many results into this direction, with adding or removing one or more
terms (roots).

In this talk we study a case where (part of) the symmetric root structure is pre-
served, however, we allow (possibly large) increasing gaps between the roots. We prove
that the finiteness of the solutions can also be guaranteed under these generalized cir-
cumstances. In our proofs we combine Baker’s method and the Bilu-Tichy theorem with
a new result providing an increasing property of the extremal values of polynomials
with distinct real roots satisfying certain symmetry and increasing gap properties.

Orsolya Herendi
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Construction of Uniformly Distributed Linear Recurring Sequences Over
Dedekind Domains

Uniformly distributed pseudorandom number sequences play an essential role in sev-
eral applications. One frequently used construction is the linear congruential method.
In the present paper, we give a sufficient condition for the generator, such that the
corresponding sequence has a uniform distribution in an infinite set of residue rings. In
particular, let D be a Dedekind domain, q ∈ D[x] be a monic irreducible polynomial,
p(x) = (x − 1)2q(x), and let P ∈ D be a prime ideal with a prime norm. If u is a se-
quence satisfying a linear recurrence relation and its minimal characteristic polynomial
is p, then u is uniformly distributed mod Ps, for any s ∈ N.

Tamás Herendi
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On families of cubic split Thue equations parametrised by linear recurrence
sequences

Let (An)n∈N, (Bn)n∈N ∈ ZN be two linear-recurrent sequences that meet a dominant
root condition and a few additional, technical requirements. We show that the split
family of Thue equations∣∣X(X − AnY )(X −BnY )− Y 3

∣∣ = 1

has but the trivial solutions, where (|x|, |y|) ∈ {(1, 0), (0, 1), (|An|, 1), (|Bn|, 1)}, if the
parameter n is larger than some effectively computable constant.

This work follows the one of Thomas [1] and Heuberger [2], who proved similar
results if one parametrises the Thue equations by integer polynomials instead of linear-
recurrent integer sequences, after experimental observations in [3] and [4] showed that
such a derivation could lead to similar results.
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The large sieve aberrations

In this talk I will give a survey of classical results and modern developments in the
large sieve methods. Special considerations will be given to the large sieve with respect
to families of Dirichlet’s characters. I will discuss peculiar features of the large sieve
inequalities for the Fourier coefficients of automorphic forms in the spectral aspect.
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Classification of L-functions of degree 2 and conductor 1

After a short review of the known fact of the structure of the Selberg class, we give
a complete description of the functions F of degree 2 and conductor 1 in the general
framework of the extended Selberg class S]. This is performed using a new numerical
invariant χF , which is easily computed from the data of the functional equation. We
show that the value of χF gives a precise description of the nature of F , thus providing
a sharp form of the classical converse theorems of Hecke and Maass. In particular,
our result confirms, in the special case under consideration, the conjecture that the
functions in the Selberg class S are automorphic L-functions.

Jerzy Kaczorowski

laima.kaziulyte@gmail.com, (University of Reading (United Kingdom))

Omega result for the remainder term in Beurling’s prime number theorem
for well-behaved integers

In this paper we obtain a new Ω-result for the remainder term ψ(x)− x of a Beurling
prime system for which the integers are very well-behaved in the sense that N(x) =
ax+O(xβ) for some a > 0 and β < 1

2
.

As part of this, we prove how bounds on ψ(x)− x lead to zero-free regions for the
Beurling zeta function, generalizing a result of Pintz to the Beurling setting. This may
be of independent interest.

Laima Kaziulyte
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Intrinsic Diophantine approximation of spheres and the complex plane

Let S2
I and S2

II be the unit sphere and the sphere of radius
√

2 in R3, both centered
at the origin. Let A = {(x0, x1, x2, x3) ∈ R4 | x0 + x1 + x2 + x3 = 1} and S2

III be the
sphere of the intersection of the unit 3-sphere in R4 and A. We consider Diophantine
approximation on S2

I , S2
II and S2

III. For x ∈ S2
I , S2

II, S2
III. we define Lagrange number as

LS(x) = lim sup
p/q∈Q3

q

∥∥∥∥x− p

q

∥∥∥∥ ,
where the limit superior runs over p/q ∈ Q3 or p/q ∈ Q4 ∩ A3 for an integral vector
p and a positive integer q without common factors. On the other hand, for ξ ∈ C, we
define Lagrange number with respect to an imaginary quadratic number field Q(

√
d)

as
LQ(

√
d)(ξ) = lim sup

z/w∈Q(
√
d)

|w|2
∣∣∣ξ − z

w

∣∣∣ .
The Diophantine approximation on the spheres S2

I , S2
II and S2

III with rational points
of R3 and A3 are equivalent to the Diophantine approximation on the complex plane
with Gaussian rationals Q(

√
−1), Q(

√
−2) and Eisenstein rationals Q(

√
−3) respec-

tively, in the sense that there are continuous maps from the spheres S2
I , S2

II and S2
III to

C ∪ {∞} which preserve the Lagrange number with respect to Q(
√
−1), Q(

√
−2) and

Q(
√
−3) respectively up to constants.

Dong Han Kim
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Dense sumsets of Sidon sets

Let k ≥ 2 be an integer. A set A of positive integers is called asymptotic basis of order
k if every large enough positive integer can be written as the sum of k terms from A.
A set of positive integers A is said to be a Sidon set if all the two terms sums formed
by the elements of A are different. Many years ago Pál Erdős, András Sárközy and

Sándor Kiss
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Vera T. Sós asked whether there exists a Sidon set which is asymptotic basis of order
3. In this talk I prove the existence of a Sidon set A with positive lower density of the
three fold sumset A+ A+ A by using probabilistic methods.

attila.kovacs@inf.elte.hu,ntihanyi@inf.elte.hu, (Eötvös Loránd University (Hungary))
Joint work with: Bertalan Borsos

Tight upper and lower bounds for the reciprocal sum of generalized Proth
primes

Calculating the reciprocal sum of sparse integer sequences can be challenging from
both mathematical and computational aspects. Just to name a few examples: amicable
numbers, Carmichael numbers, twin primes. These are examples where even the first
decimal digit is unknown. In order to be able to compute accurate bounds the exact
structure of the sequences needs to be unfolded. A Proth number is a natural number
of the form k ·2s+1 where k, s ∈ N, k is odd and k < 2s. In 1979 [1] Erdős and Odlyzko
investigated the natural density of the prime numbers having the form k ·2s+1 without
the k < 2s restriction. It was shown that odd integers k such that k · 2s + 1 is prime
for some positive integer s have a positive lower density. Assuming the Generalized
Riemann Hypothesis one can prove that there exists at least one prime in the arithmetic
progression k·2s+1 with k < 2s+ε. Without the additional ε the prime counting problem
becomes extremely hard. Solving the problem of Siegel zeroes could help, however, this
seems even harder. Let us denote the set of Proth primes by R and the sum of the
reciprocals of Proth primes by ωR =

∑
p∈R

1
p

= 1
3

+ 1
5

+ 1
13

+ 1
17

+ · · · . It was shown by

the authors [2] that 0.7473924793 < ωR < 0.7473924795. In this talk we consider the
generalized Proth numbers for any given p ∈ P by Tp = {k · pn + 1 : k < pn , (k, p) =
1, n ∈ N}. Let us denote the sum of the reciprocals of Tp by

ωp =
∞∑
i=1

1

T pi
=

1

p+ 1
+ · · · .

Among other results we proved the following theorem:

Attila Kovács and Norbert Tihanyi
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Theorem 1. ωp can be calculated by

ωp =
∞∑
i=1

p−i−1
(

Ψ(pi+1 + p−i−1)−Ψ(pi−1 + p−i−1)
)

+(
Ψ(p+ 1 + 1/p)−Ψ(1 + 1/p)

)
p−1 + (1 + p2)−1 .

We are interested in searching for primes in each set of Tp. The result of Goldfeld
implies that there are infinitely many p ∈ P exists where at least one prime can be
found in the appropriate set Tp. We show that ωp can efficiently be used to give a
general formulae for the reciprocal sum of the primes in Tp.
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A short basis of the Stickelberger ideal of a cyclotomic field

We exhibit an explicit short basis of the Stickelberger ideal of cyclotomic fields of any
conductor m, i.e., a basis containing only short elements. By definition, an element
of Z[Gm], where Gm denotes the Galois group of the field, is called short whenever it
writes as

∑
σ∈Gm εσσ with all εσ ∈ {0, 1}.

As a direct practical consequence, we deduce from this short basis an explicit upper
bound on the relative class number of the considered cyclotomic field, that is valid for
any conductor. This basis also has several concrete applications, in particular for the
cryptanalysis of the Shortest Vector Problem on Ideal lattices, one of the mathematical
problems considered as a possible base for a post-quantum cryptosystem.

Radan Kučera
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Parry numbers and Pisot numbers

We are familiar with integer expansions, that is, for an integer b greater than 1, every
real number in [0, 1) can be written as x =

∑
n≥1 xnb

−n = 0.x1x2... for a unique set of
digits xi that are integers lying in [0, b), with the relation 0.999999 · · · = 1.000000 · · · .
The most natural generalisation, perhaps, of the integer expansions are called β-
expansions and consist in writing x in the same way, but using instead of the integer
b a real number β greater than 1, with the digits still being integers lying in [0, β),
but then x might have more than one expansion. This can be corrected by using the
dynamical point of view with the transformation T : x 7→ βx, but then a new problem
arise regarding the cylinders, which are the intervals defined by finite words in a given
base (for example the cylinders of order 1 in base 2 are [0, 1/2), given by the word
0, and [1/2, 1), given by the word 1). Indeed, in an integer base b, every cylinder of
order n has length b−n, while in a non integer base β, some cylinders, generated by the
fractional part of β, have lengths that are not equal to β−n at order n. In general, there
are infinitely many types of cylinders for a beta expansion. The real numbers β such
that there are only finitely many types of β − cylinders are called Parry numbers [1].
Every Pisot number, as well as some Salem numbers, are known to be Parry numbers.
Conversely, Schmidt (1980) showed that Parry numbers verifying a certain condition
must be either Pisot numbers or Salem Numbers. In this talk, I will show examples of
how the Pisot and Parry condition are connected in small degrees as well as examples
of non Parry numbers.
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On the 2-adic valuation of differences of harmonic numbers

We explicitly determine the exact 2-adic valuation of differences of harmonic sums. We
also provide lower bounds on the 2-adic valuations of elementary symmetric functions of
1, 1/2, . . . , 1/n. We present applications to obtain lower bounds on the 2-adic valuations
of products of binomial coefficients and differences of harmonic numbers, and lacunary
sums involving binomial coefficients.

Tamás Lengyel

jared.d.lichtman@gmail.com, (University of Oxford (United States of America))

A proof of the Erdős primitive set conjecture

A set of integers greater than 1 is primitive if no member in the set divides another.
Erdős proved in 1935 that the series f(A) =

∑
a∈A 1/(a log a) is uniformly bounded over

all choices of primitive sets A. In 1988 he asked if this bound is attained for the set of
prime numbers. In this talk we describe recent work which answers Erdős’ conjecture
in the affirmative. We will also discuss applications to old questions of Erdős, Sárközy,
and Szemerédi from the 1960s.

Jared Duker Lichtman
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Distribution generated by a random inhomogenous Fibonacci sequence

We consider an inhomogenous version Gn = Gn−1 + Gn−2 + wn−2, (n ≥ 2) of the
Fibonacci sequence with initial values G0 = 0, G1 = 1 and we suppose that the term
wn takes value a with probability p, and takes b with probability q (generated by a coin
tossing). We describe the process and the distribution of Gn values.

Kálmán Liptai
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Joint work with: Yuri Bilu, Joris Nieuwveld, Joël Ouaknine, David Purser and James
Worrell

Recent progress on the Skolem problem

Florian Luca
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The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear re-
currence sequence is the union of a finite set and finitely many arithmetic progressions.
The corresponding computational question, the Skolem Problem, asks to determine
whether a given linear recurrence sequence has a zero term. Although the Skolem-
Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem re-
mains open. The main contribution of this talk is to present an algorithm to solve the
Skolem Problem for simple linear recurrence sequences (those with simple character-
istic roots). Whenever the algorithm terminates, it produces a stand-alone certificate
that its output is correct – a set of zeros together with a collection of witnesses that
no further zeros exist. We give a proof that the algorithm always terminates assuming
two classical number-theoretic conjectures: the Skolem Conjecture (also known as the
Exponential Local-Global Principle) and the p-adic Schanuel Conjecture. Preliminary
experiments with an implementation of this algorithm within the tool SKOLEM point
to the practical applicability of this method.

maga.peter@renyi.hu, (Alfréd Rényi Institute of Mathematics (Hungary))
Joint work with: Péter L. Erdős, Gergely Harcos, Shubha R. Kharel, Tamás R. Mezei
and Zoltán Toroczkai

The sequence of prime gaps is graphic I.

This is the first part of two talks (the second part will be delivered by Gergely Harcos).
Let us call a simple graph on n > 1 vertices a prime gap graph if its vertex degrees
are 1 and the first n− 1 prime gaps (we need the 1 so that the sum of these numbers
is even). We can show that such a graph exists for every large n, and under RH for
every n > 1. Moreover, a sequence of such graphs can be generated by a so-called
degree preserving growth process: in any prime gap graph on n vertices, we can find
(pn+1−pn)/2 independent edges, delete them, and connect the ends to a new, (n+1)-th
vertex. This creates a prime gap graph on n+ 1 vertices, and the process never ends.

Péter Maga
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Joint work with: Imre Z. Ruzsa

Difference sets avoiding cubic residues in cyclic groups

By constructing suitable nonnegative exponential sums, we give upper bounds on the

Máté Matolcsi
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cardinality of any set Bq in cyclic groups Zq such that the difference set Bq−Bq avoids
cubic residues modulo q.

laszlo.merai@oeaw.ac.at, (Austrian Academy of Sciences (Austria))

Divisors of sums of polynomials

In a series of papers, Sárközy and Stewart studied the prime divisors of sum-sets A+B.
Among others, they showed that if A,B ⊂ {1, . . . , N} are not too small, then there are
a ∈ A and b ∈ B such that a+ b has large prime divisors.

In this talk we explore this problem for polynomials over finite fields. In particular,
we show that if A,B ⊂ Fq[x] are sets of polynomials of degree n, then a + b has large
degree irreducible divisors for some a ∈ A, b ∈ B. In particular, if A,B have positive
relative densities, then a + b has an irreducible divisor of degree n + O(1) for some
a ∈ A, b ∈ B.

László Mérai
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(R)-dense and (N)-dense subsets of positive integers and generalized quo-
tient sets

A subset A of the set of positive integers is (R)-dense if its quotient set R(A) = {a/b :
a, b ∈ A} is dense in the positive real half-line (with respect to natural topology on
real numbers). It is a classical result that the set of prime numbers is (R)-dense. The
proof of this fact is based on the property of counting function of prime numbers.
Actually, this proof shows something more. Namely, for each infinite subset B of the
set of positive integers, the set R(P, B) = {p/b : p ∈ P, b ∈ B} is dense in the set of
positive real numbers. This motivates to introduce the notion of (N)-denseness. We
say that a set A of positive integers is (N)-dense if the set R(A,B) is dense in the set
of positive real numbers for every set B of positive integers. During the talk we will
consider characterizations of (N)-dense sets and connections between (N)-denseness of
a given set.

In 2019 Leonetti and Sanna introduced the notion of direction sets

Dk(A) = {(a1/||a||2, ..., ak/||a||2) : a = (a1, ..., ak) ∈ Ak}

Piotr Miska
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that allows us to generalize the property of (R)-denseness. Indeed, A is (R)-dense if
and only if D2(A) is dense in the set of points of unit circle with all the coordinates
positive. We will see that denseness of Dk(A) in the set of points of unit sphere with
all the coordinates positive is equivalent to denseness of the generalized quotient set

Rk(A) = {(a1/ak, ..., ak−1/ak) : a1, ..., ak ∈ A}

in the set of points of Rk−1 with all the coordinates positive. We will also show some
connections between (N)-denseness of a given set A and denseness of sets Rk(A) with
the counting function of A and its dispersion.

ladislav.misik@osu.cz, (J. Selye University (Slovakia))

Maximal subsequences with prescribed sets of accumulation points

Let (xn) be a uniformly distributed sequence mod 1. It is easy to verify that every set of
indices for which the corresponding subsequence of (xn) has a finite set of accumulation
points, has asymptotic density zero. In 2009 Bugeaud, generalizing the previous result
by Dubickas showed that this convergence to zero can be arbitrarily slow in the class
of all sequences of the form {nα}, where α is an irrational number and {x} is the
fractional part of a number x. This result was later generalized in two directions. At
first it was extended to the class of all uniformly distributed sequences, at second, finite
sets were generalized to arbitrary closed sets. In this contribution we generalize the last
result extending it to the class of all sequences with increasing asymptotic distribution
function which includes the class of all uniformly distributed sequences.

Ladislav Mǐśık
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Number of solutions to a special type of unit equations in two unknowns II

We give a brief introduction about the recent progress on the best possible general
estimate of the number of solutions to the equation ax + by = cz for fixed relatively
prime positive integers a, b and c with min{a, b, c} > 1. It is conjectured that there
is at most one solution to the equation except for specific cases. Our work [3] is the
continuation of [2] and the results prove the conjecture in several cases. As applications

Takafumi Miyazaki
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we obtain some 3-variable versions of Bennett’s works in [1] on the equation ax−by = c
for fixed positive integers a, b and c with min{a, b} > 1, as well as an analytic proof of
the celebrated theorem of Scott [4] solving the conjecture for c = 2.
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Enumerative combinatorial numbers and polynomials in graph theory

We present two different ways how it is possible to connect enumerative combinatorial
numbers and polynomials to graph theory.

On the one hand, we can generalize them into the context of graph theory. For
example, we introduce and study the Fubini number of a graph which counts the
ordered independent partitions of its set of vertices, and the related Fubini polynomial.

On the other hand, we may try to find graph theoretic interpretation of well-known
combinatorial numbers and polynomials. For example, we show such results about
r-Stirling numbers of the second kind, r-Lah numbers, their summed variants and the
related polynomials by counting matchings in certain bipartite graphs.

The talk is mainly based on the two papers below.

Gábor Nyul
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On the L1 norm of the exponential sum with the Liouville function

Take λ(n) the Liouville function, the completely multiplicative function with λ(p) =
−1. We show that ∫ 1

0

∣∣∣∣∑
n≤X

λ(n)e(nα)

∣∣∣∣dα� Xδ,

for some δ > 0. This improves on a previous lower bound of � exp(c logX/ log logX)
by methods of Balog and Perelli. Along the way we prove a bound on the L2 norm
of the exponential sum restricted to major arcs of height a small power of X, which
might be of independent interest.

Mayank Pandey
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Joint extreme values of L-functions

We consider L-functions L1, . . . , Lk from the Selberg class which have polynomial Euler
product and satisfy Selberg’s orthonormality condition. We show that on every vertical
line s = σ + it with σ ∈ (1/2, 1), these L-functions simultaneously take large values

of size exp
(
c (log t)1−σ

log log t

)
inside a small neighborhood. Our method extends to σ = 1

unconditionally, and to σ = 1/2 on the generalized Riemann hypothesis. We also
obtain similar joint omega results for arguments of the given L-functions.

 Lukasz Pańkowski
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Uniform bounds for the number of powers in arithmetic progressions

We give sharp, in some sense uniform bounds for the number of `-th powers and
arbitrary powers among the first N terms of an arithmetic progression, for N large
enough.

Ágoston Papp

paul.peringuey@univ-lorraine.fr, (Université de Lorraine (France))

A generalization of Artin’s primitive root conjecture among almost primes

Artin’s conjecture states that the set of primes for which an integer a different from
−1 or a perfect square is a primitive root admits an asymptotic density among all
primes. In 1967 C. Hooley [1] proved this conjecture under the Generalized Riemann
Hypothesis.
The notion of primitive root can be extended modulo any integer by considering the
elements of the multiplicative group generating subgroups of maximal size. One can
then look for which elements of a set of integers a given integer is a generalized primitive
root, as did S. Li and C. Pomerance for all the integers [2]. I will discuss the set of
almost primes for which an integer a is a generalized primitive root, and prove, under
GRH, results similar to Artin’s conjecture for primitive roots.
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Generalized radix representations and power integral bases

In the last century mainly through the work of Grünwald, Knuth, Penney, Gilbert,
Kátai and his students Júlia Szabó, B. Kovács, Körmendi, Környei and A. Kovács
evolved the notation of number systems or equivalently the radix representations in
algebraic number fields. Using Győry’s famous result on the finiteness of the number
of non-equivalent bases of power integral bases in algebraic number fields, B. Kovács
proved in 1981 that there are only finitely many essentially different radix represen-
tations in algebraic number fields. He was the first PhD student of Győry, who inau-
gurated in 1973. Several generalization appeared, concrete examples were computed
and connections to discrete dynamical systems were discovered in the meantime. I will
report on that efforts, which culminated in the work of Evertse, Győry, Thuswaldner
and myself in 2019, where we dealt with radix representations in general orders.

Attila Pethő
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Number of solutions to a special type of unit equations in two unknowns

For any fixed coprime positive integers a, b and c with min{a, b, c} > 1, we prove that
the equation ax+by = cz has at most two solutions in positive integers x, y and z, except
for one specific case which exactly gives three solutions. Our result is essentially sharp
in the sense that there are infinitely many examples allowing the equation to have two
solutions in positive integers. From the viewpoint of a well-known generalization of
Fermat’s equation, it is also regarded as a 3-variable generalization of the celebrated
theorem of Bennett [M.A.Bennett, On some exponential equations of S.S.Pillai, Canad.
J. Math. 53(2001), no.2, 897–922] which asserts that Pillai’s type equation ax− by = c
has at most two solutions in positive integers x and y for any fixed positive integers
a, b and c with min{a, b} > 1. In this talk we give a brief summary of corresponding
earlier results and present the main improvements leading to this definitive result.

István Pink
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Győry 80 + ε

In this talk some beautiful and memorable moments of the private life and professional
career of an outstanding mathematician Kálmán Győry are presented.

Ákos Pintér
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On solving Mordell’s equation

In 1997 K. Wildanger [5] presented a new approach for calculating all integral solutions
of Mordell’s equation y2 = x3 +k. He used methods from the geometry of numbers and
obtained solutions for integers k with |k| < 107. Later we improved a few of his bounds
which allowed solutions for |k| up to 109. For larger |k| we recently applied methods
from H. Hasse [4] for the calculation of the number N(dF ) of non-isomorphic cubic
number fields F of given discriminant dF via class field theory in [2]. This extended
the range for |k| up to about 1015. For still larger |k| the computation of class fields
became too slow. We therefore chose different theoretical methods from Hasse’s paper
which needed to be made computationally feasible [3]. With those we could calculate
N(dF ) for dF up to 1025 and beyond.

In the paper [1] the authors used a classical approach via forms for calculating all
solutions for all k up to 107. This paper also contains a nice description of the results
on Mordel’s equation untl 2015.
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Permutations and arithmetic

Consider the coprime graph on the integers, where two numbers are connected with
an edge if they are coprime. In particular, when is there a matching in the bipartite
coprime graph between two intervals of n consecutive integers? If the two intervals are
both 1 to n, we’re asking for a coprime permutation, and the natural question is how
many of them are there? One can also ask about permutations of 1 to n with other
arithmetic conditions imposed. There have been at least 4 papers posted to arXiv on
these topics since last Fall, by Bohman and Peng, Sah and Sawhney, and myself. This
talk will discuss some of these recent results and problems.
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Uniform distribution of the weighted sum-of-digits functions

The talk is based on a joint paper [1] with L.Mǐśık (Ostrava) and O.Strauch (Bratislava).
Let d ≥ 1, q ≥ 2 be integers and

Γ =


γ(1)

γ(2)

...
γ(d)

 =


γ

(1)
0 γ

(1)
1 γ

(1)
2 . . .

γ
(2)
0 γ

(2)
1 γ

(2)
2 . . .

...
...

...
. . .

γ
(d)
0 γ

(d)
1 γ

(d)
2 . . .


be a d × ∞-matrix with real entries with ~γj = (γ

(1)
j , γ

(2)
j , . . . , γ

(d)
j ) transposed in the

jth column. If n =
∑∞

j=0 n
(i)
j q

j is the q-ary representation of n ∈ N0, define the
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d-dimensional weighted sum-of-digits function by

sq,Γ(n) =
(
sq,γ(1)(n), sq,γ(2)(n), . . . , sq,γ(d)(n)

)
,

where sq,γ(i)(n) = 〈γ(i), n(i)〉, i = 1, 2, . . . , d.
In [2, Theorem 1] F. Pillichshammer proved the following theorem:

The sequence sq,Γ(n) is u.d. mod 1 if and only if for every integral vector ~h ∈
Zd \ {~0} one of the following conditions is fulfilled: either

∞∑
k=0,〈~h,~γk〉q /∈Z

‖〈~h,~γk〉‖2 = ∞,

or, there exists a non-negative integer k with 〈~h,~γk〉 /∈ Z and 〈~h,~γk〉q ∈ Z.
We replace Pillichshammer’s conditions with a single one involving a trigonometric

product:
Let Γ be the d×∞-matrix of real weights defined above. Then the sequence sq,Γ(n),

n = 0, 1, 2, . . . , is u.d. mod 1 if and only if for every integral vector ~h ∈ Zd \ {~0} we
have

lim
N→∞

N−1∏
j=0,〈~h,~γj〉/∈Z

sin π‖q〈~h,~γj〉‖
q sin π‖〈~h,~γj〉‖

= 0.

As applications of our condition we prove some upper estimates of the extreme
discrepancies of such sequences, that the existence of distribution function g(x) =
x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits
function sq,γ(n), n = 0, 1, 2, . . ., or the uniform distribution modulo one of related
sequences h1sq,γ(n) +h2sq,γ(n+ 1), where h1 and h2 are integers such that h1 +h2 6= 0,
. . . .
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The r-Fubini–Lah numbers and polynomials

Gabriella Rácz
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In our talk, we define new combinatorial numbers, the r-Fubini–Lah numbers. They
count those partitions of a finite set, where both the blocks and the partition itself are
ordered, and r distinguished elements belong to distinct ordered blocks. In connection
with these numbers, we introduce the r-Fubini–Lah polynomials, as well.

We give a detailed overview of the properties of the r-Fubini–Lah numbers and
polynomials. We prove two recurrences and a Dobiński type formula for them, we derive
the exponential generating function of their sequences, and we show their connection
with r-Fubini numbers and polynomials.

The results of this talk have been published in [1].
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Forbidden conductors of L-functions and continued fractions of particular
form

We show a connection between values of the conductor q of L-functions of degree 2 in
the extended Selberg class and properties of certain continued fractions, parametrised
by q, on which we define a positive-valued weight. We call a finite sequence of integers
m = (m0, . . . ,mk) a loop if

c(q,m) = mk +
1

qmk−1 +
q

qmk−2 +
q

. . . +
q

qm0

equals 0. It turns out that loops have a group structure and weight, when restricted to
loops, is a group homomorphism. If it is non-trivial, then q is not a conductor of any
L function of degree 2. We show several results on classes of forbidden qs, and also qs
that do occur as conductors of L function of degree 2.

Maciej Radziejewski
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Indecomposability of linear combinations of Bernoulli polynomials

Bernoulli polynomials are defined by the following generating function

tetx

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
.

Bernoulli polynomials appear in several classical results of number theory and have
important applications in classical analysis. For example, there is a close relationship
between power sums and Bernoulli polynomials. Let k and n be positive integers, then

1k + 2k + · · ·+ nk =
Bk+1(n+ 1)−Bk+1(0)

k + 1
.

A polynomial h(x) ∈ C[x] is said to be indecomposable over C if h = f(g(x)),
f(x), g(x) ∈ C[x] implies that deg(f(x)) = 1 or deg(g(x)) = 1.
In our lecture we will talk about the following result:

Theorem 1. Let 3 ≤ n be an odd integer, an be an integer which is not divisible by 4,
an−2, an−4, . . . , a3, a1 be arbitrary integers. Then the polynomial

Pn(x) = anBn(x) + an−2Bn−2(x) + · · ·+ a3B3(x) + a1B1(x)

is indecomposable over the field of complex numbers.

Csaba Rakaczki

revesz@renyi.hu, (Alfréd Rényi Institute of Mathematics (Hungary))

Achievements of János Pintz in the theory of primes

János Pintz’ 70th anniversary is one of the dedications of this conference. The lecture
attempts to give a necessarily concise overview of János’ wide-ranging, fundamental
achievements in the distribution of primes, discussing only a few of the lecturer’s choice
in some more detail. Given that the lecturer is an analyst at the first place, we will
also comment some of the methods and constructions from an analysis point of view.

Szilárd Révész
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On the connection of the error term in the Prime Number Theorem and
the location of zeroes of the Beurling zeta function

We investigate the classical question of Littlewood, originally posed for natural primes
and the Riemann zeta function, and asking for explicit determination of the oscilla-
tion of the error in the PNT ”caused by a given zero”. In the context of the more
general Beurling systems of primes and integers, we build up the necessary ingredients
to determine the best possible upper and lower estimates for the error, given a zero
of the Beurling zeta function. The surprising exact constant will be explained and
sharpness will be proved using a recent refinement by Broucke and Vindas of the 2005
breakthrough method of Diamond, Montgomery and Vorhauer, devised for randomly
”constructing” Beurling primes with approximately having some pre-set distribution
properties.

Szilárd Révész

joel.rivat@univ-amu.fr, (Aix-Marseille University (France))

Pseudo-random properties of sums and products

Along 25 years of collaboration with András Sárközy, often together with Christian
Mauduit, we will discuss the pseudo-random properties of sumsets, products and shifted
products, prime numbers and other remarkable deterministic sequences.

Joël Rivat

ruzsa@renyi.hu, (Alfréd Rényi Institute of Mathematics (Hungary))

Sumsets with multiplicative structure

Let Q be an infinite subset of primes, and let R be the set of positive integers not
divisible by any element of Q. Can R be a sumset in a nontrivial way? We construct
examples, answering a question of Győry, Hajdu and Sárközy. The sum of two squares
is an almost-example; we meditate on the possibility to modify it into a real example.

Imre Z. Ruzsa
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On quaternion algebras over certain extensions of quadratic number fields

We obtain a complete characterization of division quaternion algebras HK (p, q) over
the composite K of n quadratic number fields, where p and q are positive prime integers.
Let F be a quadratic number field. Also, we we obtain a complete characterization of
division quaternion algebras HL (p, q) , where L is an extension of F of degree l such
that L is a dihedral extension of Q, or else L is an abelian l-extension of F, unramified
over F whenever l divides the class number of F .
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Additive representation functions and discrete convolutions

For a set A of non-negative integers, let RA(n) denote the number of solutions to the
equation n = a + a′ with a, a′ ∈ A. Denote by χA(n) the characteristic function of
A. Let bn > 0 be a sequence satisfying lim supn→∞ bn < 1. In this talk, we formulate
some Erdős–Fuchs-type theorems about the error terms appearing in approximation
formulæ for RA(n) =

∑n
k=0 χA(k)χA(n − k) and

∑N
n=0RA(n) having principal terms∑n

k=0 bkbn−k and
∑N

n=0

∑n
k=0 bkbn−k, respectively.

Csaba Sándor

andrew.scoones@york.ac.uk, (University of York (United Kingdom))

On the abc conjecture in algebraic number fields

While the abc conjecture remains open, much work has been done on weaker versions,
and on generalising the conjecture to number fields. Stewart and Yu were able to
give an exponential bound for max {a, b, c} in terms of the radical over the integers
[3],[4], while Győry was able to give an exponential bound for the projective height
H (a, b, c) in terms of the radical for algebraic integers [1]. We generalise Stewart and
Yu’s method to give an improvement on Győry’s bound for algebraic integers, before
briefly discussing applications to the effective Skolem-Mahler-Lech problem and the
XY Z conjecture [2]. We note that independently Győry attained similar results which
we will also discuss.
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Terms of recurrence sequences in the solution sets of generalized Pell equa-
tions

In this presentation we completely describe those recurrence sequences which have
infinitely many terms in the solution sets of generalized Pell equations. Further, we
give an upper bound for the number of such terms when there are only finitely many
of them.

Péter Sebestyén

igor.shparlinski@unsw.edu.au, (University of New South Wales (Australia))

Bilinear forms with Kloosterman and Salie Sums and Moments of L-functions

We present some recent results on bilinear forms with complete and incomplete Kloost-
erman and Salie sums. These results are of independent interest and also play a major
role in bounding error terms in asymptotic formulas for moments of various L-functions.
We then describe several results about non-correlation of Kloosterman and Salie sums
between themselves and also with some classical number-theoretic functions such as
the Mobius function, the divisor function and the sum of binary digits, etc. Some open
problems will be outlined as well.

Igor Shpralinski

bartosz.sobolewski@uj.edu.pl, (Jagiellonian University (Poland))

Monochromatic arithmetic progressions in binary words associated with
pattern sequences

Let ev(n) denote the number of occurrences of a pattern v in the binary expansion of
n ∈ N. In the talk we consider monochromatic arithmetic progressions in the class
of words (ev(n) mod 2)n≥0 over {0, 1}, which includes the Thue–Morse word t (for
v = 1) and a variant of the Rudin–Shapiro word r (for v = 11). So far, the problem

Bartosz Sobolewski
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of exhibiting long progressions and finding an upper bound on their length has mostly
been studied for t and certain generalizations [1, 2, 3]. The main goal of the talk is
to show analogous results for r and some weaker results for a general pattern v. In
particular, we prove that a monochromatic arithmetic progression of difference d ≥ 3
starting at 0 in r has length at most (d+ 3)/2, with equality infinitely often. We also
compute the maximal length of monochromatic progressions of differences 2k − 1 and
2k + 1.
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Rank of matrices with entries from a multiplicative group

We establish lower bounds on the rank of matrices in which all but the diagonal entries
lie in a multiplicative group of small rank. Applying these bounds we show that the
distance sets of finite pointsets in Rd generate high rank multiplicative groups and that
multiplicative groups of small rank cannot contain large sumsets.

Jozsef Solymosi

gsoydan@uludag.edu.tr, (Bursa Uludag University (Turkey))
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The elementary and modular approaches to the generalized Ramanujan-
Nagell equation

Gökhan Soydan
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Let d, k be fixed coprime positive integers with min{d, k} > 1. A class of polynomial-
exponential Diophantine equations of the form

x2 + dy = kz, x, y, z ∈ Z+ (1)

is usually called the generalized Ramanujan-Nagell equation. It has a long history and
rich content (see [3]). In 2014, N. Terai [6] discussed the solution of (1) in the case
d = 2k − 1. He conjectured that for any k with k > 1, the equation

x2 + (2k − 1)y = kz, x, y, z ∈ Z+ (2)

has only one solution (x, y, z) = (k − 1, 1, 2). The above conjecture has been verified
in some special cases (see [1], [2] and [6]). In this work, firstly, using the modular
approach, we prove that if k ≡ 0 (mod 4), 30 < k < 724 and 2k − 1 is an odd prime
power, then under the GRH, the equation (2) has only one positive integer solution
(x, y, z) = (k− 1, 1, 2). The above results solve some difficult cases of Terai’s conecture
concerning the equation (2). Secondly, using various elementary methods in number
theory, we give certain criterions which can make the equation (2) to have no positive
integer solutions (x, y, z) with y ∈ {3, 5}. These results make up the defiency of the
modular approach when applied to (2). This talk consists of the results in [4] and
[5]. This work was supported by the Research Fund of Bursa Uludağ University under
Project No: F-2020/8.
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Laudatio for Professor András Sárközy

In this talk we shall discuss some of the results obtained by Professor András Sárközy
over his distinguished career and the influence they have had in combinatorial and
analytic number theory. In addition we shall include some personal reminiscences.

Cameron Stewart

sztojka.miroszlav@kmf.org.ua, (Ferenc Rákóczi II Transcarpathian Hungarian College
of Higher Education (Ukraine))

On wild p-groups over local factorial rings

The problem of describing the tame and wild finite groups G over a field R is completely
solved in [1]. For a ring R, this problem is completely solved in the cases when R is a
ring of p-adic numbers or a complete discrete valuation ring or a ring of formal power
series with P -adic coeficients (see [1]–[6]). In many other cases the problem is solved
when there are constraints on groups or rings. We consider the case when G is a
2-group and R is local factorial rings of characteristic 0.
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Integers with preassigned digits

For an ”interesting” set S of non negative integers, we will discuss some properties of
the integers in S with preassigned digits.

Cathy Swaenepoel

szalay.laszlo@uni-sopron.hu, (University of Sopron (Hungary) and University J. Selye
(Slovakia))

Properties of Motzkin triangle

The Motzkin triangle is established as the zero-free part of a well-defined plane array.
The right leg of the triangle is the Motzkin sequence itself, it satisfies a second order
linear recurrence relation with linear polynomial coefficients.

We extend this relation in the triangle by proving the existence of a recursive for-
mula for the formation of three arbitrary elements, and construct the corresponding
formulae for three connected entries. These recursive formulae have bivariate polyno-
mial coefficients of higher order. The construction method is able to create recurrence
rules for other structures.

László Szalay
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On Higher Power Rational Diophantine Tuples

Let k ≥ 2. A set of nonzero rationals {a1, a2, . . . , an} is called a kth-power rational
Diophantine n-tuple if for every 1 ≤ i < j ≤ n there exist rationals rij such that
aiaj + 1 = rkij. The case k = 2 is classical and studied extensively, giving rise to
various generalizations. Surprisingly, one of the most natural of these, namely, letting
the exponent to vary, is yet to see serious attention and besides the case of rational
integers, it have not seen much attention.

In this talk, we give a very general discussion on the topic of powers different than
squares and present a few new results based on analogues of known techniques. We
show how simple numeric experimentation reveals the existence of multiple parametric
families of triples for any exponent and then attempt to build quadruples out of these.
The concept of curves induced by Diophantine pairs is also introduced and we make
simple observations about these objects. The usefulness of this more general framework
for the special case k = 2 is explored very briefly, exposing some blockers and limitations
of the ideas.

The talk serves as both a standalone and a prelude to the contributed talk of Gergő
Batta under the title ”On 3rd Power Rational Diophantine Triples and Quadruples”.

Márton Szikszai

tichy@tugraz.at, (Graz University of Technology (Austria))

Diophantine problems, polynomials and linear recurrences

Starting point is the well-known Pillai’s problem which is concerned with the diophan-
tine equation ax− by = c. For c = 1 this is the famous Catalan equation and since 2004
it is known from Mihailescu’s work that 32 − 23 = 1 is the only solution in positive
integers to this equation. For general c a Pillai’s problem is widely open, however many
partial results are known. We will report on some special cases and we will extend the
problem to linear recurrences, i.e. we replace the powers ax and by by linear reccur-
rences Ux and Vy (with integer coefficients) satisfying some dominate root condition.
We focus on specific sequences such as Fibonacci numbers and their generalizations. It
is known that differences Ux − Vy can attain only two different values with the excep-
tion of finitely many cases (which can be completely described for certain sequences).
Furthermore, a quantitative density version of Pillai’s problem is considered and an

Robert F. Tichy
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asymptotic formula for the number of (x, y) sucht that |Ux − Vy| does not exceed T
(tending to infinity) is proved. Finally, some connections to diophantine approximation
problems and polynomials along prime numbers are discussed.

tijdeman@math.leidenuniv.nl, (Leiden University (The Netherlands))
Joint work with: Lajos Hajdu

The Diophantine equation f(x) = g(y) for polynomials f, g where f has simple
rational roots

We consider the Diophantine equation f(x) = g(y) where both polynomials f and
g have rational coefficients and f has simple rational roots. We give conditions for
the cases that the equation has infinitely many rational solutions with a bounded
denominator and provide examples to illustrate that the conditions are necessary. We
show a close connection with the Prouhet-Tarry-Escott problem. Our main tool is the
Bilu-Tichy theorem.

Robert Tijdeman

tinkova.magdalena@gmail.com, (Czech Technical University in Prague (Czech Repub-
lic))

Trace and norm of indecomposable integers in cubic orders

Additively indecomposable integers in totally real number fields are a useful tool for
the study of quadratic forms over these fields. Except for a few results, we do not know
much about them. So far, their structure was fully determined only in the case of real
quadratic fields [8, 3] and monogenic simplest cubic fields [5], and we have some partial
results for real biquadratic fields [2, 7]. Moreover, the norm of indecomposable integers
in these fields is bounded [1], and we can use the discriminant of the field as this bound
[6]. However, this bound is often not sharp, and so far, it was improved in the case of
quadratic fields [3, 4, 9]. In this talk, we will show similar results for several families
of cubic fields. Furthermore, we will also study the minimal trace of indecomposable
integers after multiplying by elements of the codifferent.

Magdaléna Tinková
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[5] V. Kala and M. Tinková, Universal quadratic forms, small norms and traces in
families of number fields, in Int. Math. Res. Not. IMRN, to appear.

[6] V. Kala and P. Yatsyna, On Kitaoka’s conjecture and lifting problem for universal
quadratic forms, preprint.
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Matrix Kloosterman sums

I will talk about a family of exponential sums that arises in the study of the horocyclic
flow on the general liner group. This sum is a natural generalization of the classical
Kloosterman sum, and share a number of similar properties. I will talk about optimal
bounds in this family, giving an explicit version of the ”generic purity” phenomenon of
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Fouvry-Katz.

ltoth@gamma.ttk.pte.hu, (University of Pécs (Hungary))
Joint work with: Olivier Bordellès

Additive arithmetic functions meet the inclusion-exclusion principle: Asymp-
totic formulas concerning the GCD and LCM of several integers

We obtain asymptotic formulas for the sums∑
n1,...,nk≤x

f((n1, . . . , nk))

and ∑
n1,...,nk≤x

f([n1, . . . , nk]),

involving the GCD and LCM of the integers n1, . . . , nk, where f belongs to certain
classes of additive arithmetic functions. In particular, we consider the generalized
omega function Ω`(n) =

∑
pν ||n ν

` investigated by Duncan [2] and Hassani [3], and the

functions A(n) =
∑

pν ||n νp, A
∗(n) =

∑
p|n p, B(n) = A(n) − A∗(n) studied by Alladi

and Erdős [1]. As a key auxiliary result we use an inclusion-exclusion-type identity.
For example, we prove that for any fixed integers k ≥ 2 and ` ≥ 0,

1

xk

∑
n1,...,nk≤x

Ω`([n1, . . . , nk]) = k log log x+ c+
N∑
j=1

aj
(log x)j

+O

(
1

(log x)N+1

)
,

for every N ≥ 1, where c and aj (1 ≤ j ≤ N) are certain explicit constants.
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Values of binary partition function as sums of three squares

Let b(n) counts the number of binary partitions of non-negative integer n, i.e.,

b(n) = #{(k1, . . . , km) : n =
m∑
i=1

2ki , m ∈ N+, k1 ≤ k2 ≤ . . . ≤ km}.

We characterize those values of n ∈ N such that b(n) can be written as a sum of three
squares of integers. The characterization is given in terms of certain regular sequences
related to the Prouhet-Thue-Morse sequence. As an application, we prove that

lim
N→+∞

#{n : b(n) is a sum of three squares} ∩ [0, N ]

N
=

5

6
.

Maciej Ulas
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Diophantine equations for polynomials with restricted coefficients - power
values

In this talk we study of Diophantine equations involving polynomials with restricted
coefficients. As a generalization of Littlewood polynomials, we shall consider polyno-
mials whose coefficients are composed of primes coming from a fixed finite set. We
shall be interested in perfect power values of such polynomials - that is, in Schinzel-
Tijdeman equations and hyper- and superelliptic equations related to them. We shall
provide effective upper bounds for the solutions of such equations. For this, we need
to combine the effective theory of such equations and the theory of S-unit equations
with new assertions concerning the root structures of such polynomials.
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On a family of unit equations over simplest cubic fields

Let a ∈ Z and ρ be a root of fa(x) = x3 − ax2 − (a + 3)x − 1, then the number field
Ka = Q(ρ) is called a simplest cubic field [1]. In this talk we consider the family of
unit equations u1 + u2 = n where u1, u2 ∈ Z[ρ]∗ and n ∈ Z. We completely solve the
unit equations under the restriction |n| ≤ max{1, |a|1/3}.
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An application of Runge’s theorem and Baker’s theorem to an effective
version of a theorem of Shioda on ranks of elliptic curves

In this talk we will discuss a theorem which extends a number of results in the literature.
In particular, we show effectively that for m sufficiently large, an elliptic curve given
by y2 = f(x) +m2, with f(x) a cubic polynomial that splits over Z, has rank at least
2. This result can also be regarded as an effective version of a theorem of Shioda.

Gary Walsh

arne.winterhof@oeaw.ac.at, (RICAM, Austrian Academy of Sciences (Austria))

Pseudorandom binary sequences: Quality measures and constructions

In their ground-breaking paper [1], Mauduit and Sárközy introduced several measures
of pseudorandomness for binary sequences including the correlation measure of order
k. They also showed that the Legendre sequence behaves essentially like a random
sequence with respect to these measures. This paper started an important and very
successful area of research and has been cited about 200 times.

Besides the correlation measure of order k there are several measures of pseudoran-
domness which can be used to sieve sequences with undesirable non-random structure
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including

� linear complexity,

� maximum-order complexity,

� and expansion complexity.

These measures are partly not independent and partly complete each other. First we
study their relations. It turns out that the correlation measure of order k is on the top
of the hierarchy of pseudorandom measures.

Then we analyze these measures for some sequences including the Legendre se-
quence, the Thue-Morse sequence and the subsequence of the Thue-Morse sequence
along squares.

For a recent survey on this topic see [2].
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Bounds toward Hypothesis S for cusp forms

Iwaniec, Luo, and Sarnak proposed Hypothesis S and its generalization which predicts
non-trivial bounds for a smooth sum of the product of an arithmetic sequence {an}
and a fractional exponential function. When an is the Fourier coefficient λf (n) of
a fixed holomorphic cusp form f , however, a resonance phenomenon prohibits any
improvement of the bound beyond a barrier. It is believed that this resonance barrier
could be overcome when the weight k of f tends to infinity. The present paper is a
first step toward this goal by proving non-trivial bounds for this sum when k and the
summation length X both tend to infinity. No such non-trivial bounds are previously
known if the form f is allowed to move. Similar bounds are also proved for linear
phases and for Maass forms. The main technology is improved large sieve inequalities
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over a short interval.
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Some analogues of pair correlation of zeta zeros

In 1972 H. L. Montgomery introduced the study of the pair correlation of zeros of
the Riemann zeta-function ζ(s) and thereby opened a new direction for studying this
function and the relations to the distribution of primes. His main motivation arose from
a problem concerning the class numbers of imaginary quadratic fields. Montgomery’s
work, assuming the Riemann Hypothesis, not only gave results about the simplicity
and distribution of the zeta zeros on the critical line, but also revealed connections to
random matrix theory and was interpreted by Montgomery as being in accordance with
the view (which legend dates back to Hilbert and Pólya) that there is a yet undiscovered
linear operator whose eigenvalues characterize the zeros of ζ(s).

In our study we first present an alternative way to develop Montgomery’s argument.
This alternative method has the advantage that it can also be applied in other instances
for which we provide some examples (parts of it done jointly with my former doctoral
student Yunus Karabulut), viz. the correlation of zeta zeros with maxima points of
ζ(s) on the critical line, the pair correlation of these maxima, and the correlation of
zeros of one Dirichlet L-function with those of another Dirichlet L-function, and some
observations about correlations of zeta zeros with the zeros of ζ ′(s).

In my talk first I will describe Montgomery’s work and its impacts on some subjects
such as the theory of the Riemann zeta-function including relations with random matrix
theory and the distribution of primes. Then I will recount those analogues of pair
correlation of zeta zeros that we have worked out.

Cem Yalçın Yıldırım
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On a variant of Pillai’s problem with binary recurrences and S-units
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Let U = (Un)n∈N be a fixed binary recurrence with real characteristic roots α, β sat-
isfying |α| > |β| and let p1, . . . , ps be fixed distinct prime numbers. In this paper we
show that there exist effective computable constants C+ ≥ 0 and C− ≥ 0 such that
the equation

Un − px11 · · · pxss = c

has at most s solutions (n, x1, . . . , xs) if c > C+ and at most s+1 solutions (n, x1, . . . , xs)
if c < −C−.

mikulas.zindulka@matfyz.cuni.cz, (Charles University (Czech Republic))

Number of elements of small norm in the simplest cubic fields

We work in a family of the simplest cubic fields Ka parametrized by one integer
parameter a. Our goal is to estimate the number of integral elements (up to conjugation
and multiplication by units) whose norm is below a certain bound X. We provide an
asymptotic estimate depending on a and X up to a multiplicative constant which is
independent of the two parameters.

The study of elements of small norm was initiated in a paper by Lemmermeyer and
Pethő [1] who showed that the norm of any non-unit integral element of Ka is at least
2a + 3 and that the minimum is attained. The result was further extended by Kala
and Tinková [2], who gave an estimate for the number of elements with norm ≤ a2.
The count is much larger than predicted by the class number formula.

We give a natural explanation of this discrepancy and show that if X ≥ a4, then the
number of elements agrees with the heuristics coming from the class number formula.
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[1] F. Lemmermeyer, A. Pethő, Simplest Cubic Fields, Manuscripta Math. 88 (1995),
53–58.
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